Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.

Identifieur interne : 000A87 ( Main/Exploration ); précédent : 000A86; suivant : 000A88

Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.

Auteurs : Gemma A. Figtree [Australie] ; Chia-Chi Liu ; Stephanie Bibert ; Elisha J. Hamilton ; Alvaro Garcia ; Caroline N. White ; Karin K M. Chia ; Flemming Cornelius ; Kaethi Geering ; Helge H. Rasmussen

Source :

RBID : pubmed:19542013

Descripteurs français

English descriptors

Abstract

Angiotensin II (Ang II) inhibits the cardiac sarcolemmal Na(+)-K(+) pump via protein kinase (PK)C-dependent activation of NADPH oxidase. We examined whether this is mediated by oxidative modification of the pump subunits. We detected glutathionylation of beta(1), but not alpha(1), subunits in rabbit ventricular myocytes at baseline. beta(1) Subunit glutathionylation was increased by peroxynitrite (ONOO(-)), paraquat, or activation of NADPH oxidase by Ang II. Increased glutathionylation was associated with decreased alpha(1)/beta(1) subunit coimmunoprecipitation. Glutathionylation was reversed after addition of superoxide dismutase. Glutaredoxin 1, which catalyzes deglutathionylation, coimmunoprecipitated with beta(1) subunit and, when included in patch pipette solutions, abolished paraquat-induced inhibition of myocyte Na(+)-K(+) pump current (I(p)). Cysteine (Cys46) of the beta(1) subunit was the likely candidate for glutathionylation. We expressed Na(+)-K(+) pump alpha(1) subunits with wild-type or Cys46-mutated beta(1) subunits in Xenopus oocytes. ONOO(-) induced glutathionylation of beta(1) subunit and a decrease in Na(+)-K(+) pump turnover number. This was eliminated by mutation of Cys46. ONOO(-) also induced glutathionylation of the Na(+)-K(+) ATPase beta(1) subunit from pig kidney. This was associated with a approximately 2-fold decrease in the rate-limiting E(2)-->E(1) conformational change of the pump, as determined by RH421 fluorescence. We propose that kinase-dependent regulation of the Na(+)-K(+) pump occurs via glutathionylation of its beta(1) subunit at Cys46. These findings have implications for pathophysiological conditions characterized by neurohormonal dysregulation, myocardial oxidative stress and raised myocyte Na(+) levels.

DOI: 10.1161/CIRCRESAHA.109.199547
PubMed: 19542013


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.</title>
<author>
<name sortKey="Figtree, Gemma A" sort="Figtree, Gemma A" uniqKey="Figtree G" first="Gemma A" last="Figtree">Gemma A. Figtree</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Cardiology, Royal North Shore Hospital, University of Sydney, St Leonards NSW 2065, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Cardiology, Royal North Shore Hospital, University of Sydney, St Leonards NSW 2065</wicri:regionArea>
<orgName type="university">Université de Sydney</orgName>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
</author>
<author>
<name sortKey="Bibert, Stephanie" sort="Bibert, Stephanie" uniqKey="Bibert S" first="Stephanie" last="Bibert">Stephanie Bibert</name>
</author>
<author>
<name sortKey="Hamilton, Elisha J" sort="Hamilton, Elisha J" uniqKey="Hamilton E" first="Elisha J" last="Hamilton">Elisha J. Hamilton</name>
</author>
<author>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
</author>
<author>
<name sortKey="White, Caroline N" sort="White, Caroline N" uniqKey="White C" first="Caroline N" last="White">Caroline N. White</name>
</author>
<author>
<name sortKey="Chia, Karin K M" sort="Chia, Karin K M" uniqKey="Chia K" first="Karin K M" last="Chia">Karin K M. Chia</name>
</author>
<author>
<name sortKey="Cornelius, Flemming" sort="Cornelius, Flemming" uniqKey="Cornelius F" first="Flemming" last="Cornelius">Flemming Cornelius</name>
</author>
<author>
<name sortKey="Geering, Kaethi" sort="Geering, Kaethi" uniqKey="Geering K" first="Kaethi" last="Geering">Kaethi Geering</name>
</author>
<author>
<name sortKey="Rasmussen, Helge H" sort="Rasmussen, Helge H" uniqKey="Rasmussen H" first="Helge H" last="Rasmussen">Helge H. Rasmussen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19542013</idno>
<idno type="pmid">19542013</idno>
<idno type="doi">10.1161/CIRCRESAHA.109.199547</idno>
<idno type="wicri:Area/Main/Corpus">000A96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A96</idno>
<idno type="wicri:Area/Main/Curation">000A96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A96</idno>
<idno type="wicri:Area/Main/Exploration">000A96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.</title>
<author>
<name sortKey="Figtree, Gemma A" sort="Figtree, Gemma A" uniqKey="Figtree G" first="Gemma A" last="Figtree">Gemma A. Figtree</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Cardiology, Royal North Shore Hospital, University of Sydney, St Leonards NSW 2065, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Cardiology, Royal North Shore Hospital, University of Sydney, St Leonards NSW 2065</wicri:regionArea>
<orgName type="university">Université de Sydney</orgName>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
</author>
<author>
<name sortKey="Bibert, Stephanie" sort="Bibert, Stephanie" uniqKey="Bibert S" first="Stephanie" last="Bibert">Stephanie Bibert</name>
</author>
<author>
<name sortKey="Hamilton, Elisha J" sort="Hamilton, Elisha J" uniqKey="Hamilton E" first="Elisha J" last="Hamilton">Elisha J. Hamilton</name>
</author>
<author>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
</author>
<author>
<name sortKey="White, Caroline N" sort="White, Caroline N" uniqKey="White C" first="Caroline N" last="White">Caroline N. White</name>
</author>
<author>
<name sortKey="Chia, Karin K M" sort="Chia, Karin K M" uniqKey="Chia K" first="Karin K M" last="Chia">Karin K M. Chia</name>
</author>
<author>
<name sortKey="Cornelius, Flemming" sort="Cornelius, Flemming" uniqKey="Cornelius F" first="Flemming" last="Cornelius">Flemming Cornelius</name>
</author>
<author>
<name sortKey="Geering, Kaethi" sort="Geering, Kaethi" uniqKey="Geering K" first="Kaethi" last="Geering">Kaethi Geering</name>
</author>
<author>
<name sortKey="Rasmussen, Helge H" sort="Rasmussen, Helge H" uniqKey="Rasmussen H" first="Helge H" last="Rasmussen">Helge H. Rasmussen</name>
</author>
</analytic>
<series>
<title level="j">Circulation research</title>
<idno type="eISSN">1524-4571</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphatases (metabolism)</term>
<term>Angiotensin II (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Cation Transport Proteins (metabolism)</term>
<term>Cell Adhesion Molecules, Neuronal (metabolism)</term>
<term>Cysteine (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Kidney (drug effects)</term>
<term>Kidney (enzymology)</term>
<term>Kinetics (MeSH)</term>
<term>Male (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Myocytes, Cardiac (drug effects)</term>
<term>Myocytes, Cardiac (enzymology)</term>
<term>NADPH Oxidases (metabolism)</term>
<term>Oocytes (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Paraquat (pharmacology)</term>
<term>Peroxynitrous Acid (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Kinase C (metabolism)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Rabbits (MeSH)</term>
<term>Sheep (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sodium-Potassium-Exchanging ATPase (chemistry)</term>
<term>Sodium-Potassium-Exchanging ATPase (genetics)</term>
<term>Sodium-Potassium-Exchanging ATPase (metabolism)</term>
<term>Structure-Activity Relationship (MeSH)</term>
<term>Superoxide Dismutase (metabolism)</term>
<term>Swine (MeSH)</term>
<term>Xenopus laevis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide peroxynitreux (métabolisme)</term>
<term>Adenosine triphosphatases (métabolisme)</term>
<term>Angiotensine-II (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Cystéine (MeSH)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Lapins (MeSH)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Molécules d'adhérence cellulaire neuronale (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Myocytes cardiaques (effets des médicaments et des substances chimiques)</term>
<term>Myocytes cardiaques (enzymologie)</term>
<term>Mâle (MeSH)</term>
<term>NADPH oxidase (métabolisme)</term>
<term>Ovis (MeSH)</term>
<term>Ovocytes (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Paraquat (pharmacologie)</term>
<term>Protéine kinase C (métabolisme)</term>
<term>Rein (effets des médicaments et des substances chimiques)</term>
<term>Rein (enzymologie)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Sodium-Potassium-Exchanging ATPase (composition chimique)</term>
<term>Sodium-Potassium-Exchanging ATPase (génétique)</term>
<term>Sodium-Potassium-Exchanging ATPase (métabolisme)</term>
<term>Suidae (MeSH)</term>
<term>Superoxide dismutase (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transporteurs de cations (métabolisme)</term>
<term>Xenopus laevis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Sodium-Potassium-Exchanging ATPase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Sodium-Potassium-Exchanging ATPase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Angiotensin II</term>
<term>Cation Transport Proteins</term>
<term>Cell Adhesion Molecules, Neuronal</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>NADPH Oxidases</term>
<term>Peroxynitrous Acid</term>
<term>Protein Kinase C</term>
<term>Sodium-Potassium-Exchanging ATPase</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sodium-Potassium-Exchanging ATPase</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Kidney</term>
<term>Myocytes, Cardiac</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Myocytes cardiaques</term>
<term>Rein</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Myocytes cardiaques</term>
<term>Rein</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Kidney</term>
<term>Myocytes, Cardiac</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Sodium-Potassium-Exchanging ATPase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide peroxynitreux</term>
<term>Adenosine triphosphatases</term>
<term>Angiotensine-II</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Molécules d'adhérence cellulaire neuronale</term>
<term>NADPH oxidase</term>
<term>Protéine kinase C</term>
<term>Sodium-Potassium-Exchanging ATPase</term>
<term>Superoxide dismutase</term>
<term>Transporteurs de cations</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Paraquat</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Paraquat</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cysteine</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Male</term>
<term>Mutation</term>
<term>Oocytes</term>
<term>Oxidation-Reduction</term>
<term>Protein Conformation</term>
<term>Protein Processing, Post-Translational</term>
<term>Rabbits</term>
<term>Sheep</term>
<term>Signal Transduction</term>
<term>Structure-Activity Relationship</term>
<term>Swine</term>
<term>Xenopus laevis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cinétique</term>
<term>Conformation des protéines</term>
<term>Cystéine</term>
<term>Humains</term>
<term>Lapins</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Mutation</term>
<term>Mâle</term>
<term>Ovis</term>
<term>Ovocytes</term>
<term>Oxydoréduction</term>
<term>Relation structure-activité</term>
<term>Suidae</term>
<term>Transduction du signal</term>
<term>Xenopus laevis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Angiotensin II (Ang II) inhibits the cardiac sarcolemmal Na(+)-K(+) pump via protein kinase (PK)C-dependent activation of NADPH oxidase. We examined whether this is mediated by oxidative modification of the pump subunits. We detected glutathionylation of beta(1), but not alpha(1), subunits in rabbit ventricular myocytes at baseline. beta(1) Subunit glutathionylation was increased by peroxynitrite (ONOO(-)), paraquat, or activation of NADPH oxidase by Ang II. Increased glutathionylation was associated with decreased alpha(1)/beta(1) subunit coimmunoprecipitation. Glutathionylation was reversed after addition of superoxide dismutase. Glutaredoxin 1, which catalyzes deglutathionylation, coimmunoprecipitated with beta(1) subunit and, when included in patch pipette solutions, abolished paraquat-induced inhibition of myocyte Na(+)-K(+) pump current (I(p)). Cysteine (Cys46) of the beta(1) subunit was the likely candidate for glutathionylation. We expressed Na(+)-K(+) pump alpha(1) subunits with wild-type or Cys46-mutated beta(1) subunits in Xenopus oocytes. ONOO(-) induced glutathionylation of beta(1) subunit and a decrease in Na(+)-K(+) pump turnover number. This was eliminated by mutation of Cys46. ONOO(-) also induced glutathionylation of the Na(+)-K(+) ATPase beta(1) subunit from pig kidney. This was associated with a approximately 2-fold decrease in the rate-limiting E(2)-->E(1) conformational change of the pump, as determined by RH421 fluorescence. We propose that kinase-dependent regulation of the Na(+)-K(+) pump occurs via glutathionylation of its beta(1) subunit at Cys46. These findings have implications for pathophysiological conditions characterized by neurohormonal dysregulation, myocardial oxidative stress and raised myocyte Na(+) levels.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19542013</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1524-4571</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>105</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Circulation research</Title>
<ISOAbbreviation>Circ Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.</ArticleTitle>
<Pagination>
<MedlinePgn>185-93</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1161/CIRCRESAHA.109.199547</ELocationID>
<Abstract>
<AbstractText>Angiotensin II (Ang II) inhibits the cardiac sarcolemmal Na(+)-K(+) pump via protein kinase (PK)C-dependent activation of NADPH oxidase. We examined whether this is mediated by oxidative modification of the pump subunits. We detected glutathionylation of beta(1), but not alpha(1), subunits in rabbit ventricular myocytes at baseline. beta(1) Subunit glutathionylation was increased by peroxynitrite (ONOO(-)), paraquat, or activation of NADPH oxidase by Ang II. Increased glutathionylation was associated with decreased alpha(1)/beta(1) subunit coimmunoprecipitation. Glutathionylation was reversed after addition of superoxide dismutase. Glutaredoxin 1, which catalyzes deglutathionylation, coimmunoprecipitated with beta(1) subunit and, when included in patch pipette solutions, abolished paraquat-induced inhibition of myocyte Na(+)-K(+) pump current (I(p)). Cysteine (Cys46) of the beta(1) subunit was the likely candidate for glutathionylation. We expressed Na(+)-K(+) pump alpha(1) subunits with wild-type or Cys46-mutated beta(1) subunits in Xenopus oocytes. ONOO(-) induced glutathionylation of beta(1) subunit and a decrease in Na(+)-K(+) pump turnover number. This was eliminated by mutation of Cys46. ONOO(-) also induced glutathionylation of the Na(+)-K(+) ATPase beta(1) subunit from pig kidney. This was associated with a approximately 2-fold decrease in the rate-limiting E(2)-->E(1) conformational change of the pump, as determined by RH421 fluorescence. We propose that kinase-dependent regulation of the Na(+)-K(+) pump occurs via glutathionylation of its beta(1) subunit at Cys46. These findings have implications for pathophysiological conditions characterized by neurohormonal dysregulation, myocardial oxidative stress and raised myocyte Na(+) levels.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Figtree</LastName>
<ForeName>Gemma A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Department of Cardiology, Royal North Shore Hospital, University of Sydney, St Leonards NSW 2065, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chia-Chi</ForeName>
<Initials>CC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bibert</LastName>
<ForeName>Stephanie</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hamilton</LastName>
<ForeName>Elisha J</ForeName>
<Initials>EJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Garcia</LastName>
<ForeName>Alvaro</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>White</LastName>
<ForeName>Caroline N</ForeName>
<Initials>CN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chia</LastName>
<ForeName>Karin K M</ForeName>
<Initials>KK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cornelius</LastName>
<ForeName>Flemming</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Geering</LastName>
<ForeName>Kaethi</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rasmussen</LastName>
<ForeName>Helge H</ForeName>
<Initials>HH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Circ Res</MedlineTA>
<NlmUniqueID>0047103</NlmUniqueID>
<ISSNLinking>0009-7330</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C503551">ATP1B1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C504190">ATP1B2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C519304">ATP1B3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027682">Cation Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015816">Cell Adhesion Molecules, Neuronal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11128-99-7</RegistryNumber>
<NameOfSubstance UI="D000804">Angiotensin II</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>14691-52-2</RegistryNumber>
<NameOfSubstance UI="D030421">Peroxynitrous Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.-</RegistryNumber>
<NameOfSubstance UI="D019255">NADPH Oxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.13</RegistryNumber>
<NameOfSubstance UI="D011493">Protein Kinase C</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C499076">ATP1A1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000251">Adenosine Triphosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 7.2.2.13</RegistryNumber>
<NameOfSubstance UI="D000254">Sodium-Potassium-Exchanging ATPase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PLG39H7695</RegistryNumber>
<NameOfSubstance UI="D010269">Paraquat</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000251" MajorTopicYN="N">Adenosine Triphosphatases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000804" MajorTopicYN="N">Angiotensin II</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027682" MajorTopicYN="N">Cation Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015816" MajorTopicYN="N">Cell Adhesion Molecules, Neuronal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007668" MajorTopicYN="N">Kidney</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032383" MajorTopicYN="N">Myocytes, Cardiac</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019255" MajorTopicYN="N">NADPH Oxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009865" MajorTopicYN="N">Oocytes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010269" MajorTopicYN="N">Paraquat</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030421" MajorTopicYN="N">Peroxynitrous Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011493" MajorTopicYN="N">Protein Kinase C</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011817" MajorTopicYN="N">Rabbits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012756" MajorTopicYN="N">Sheep</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000254" MajorTopicYN="N">Sodium-Potassium-Exchanging ATPase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014982" MajorTopicYN="N">Xenopus laevis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19542013</ArticleId>
<ArticleId IdType="pii">CIRCRESAHA.109.199547</ArticleId>
<ArticleId IdType="doi">10.1161/CIRCRESAHA.109.199547</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
</region>
<settlement>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Sydney</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bibert, Stephanie" sort="Bibert, Stephanie" uniqKey="Bibert S" first="Stephanie" last="Bibert">Stephanie Bibert</name>
<name sortKey="Chia, Karin K M" sort="Chia, Karin K M" uniqKey="Chia K" first="Karin K M" last="Chia">Karin K M. Chia</name>
<name sortKey="Cornelius, Flemming" sort="Cornelius, Flemming" uniqKey="Cornelius F" first="Flemming" last="Cornelius">Flemming Cornelius</name>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
<name sortKey="Geering, Kaethi" sort="Geering, Kaethi" uniqKey="Geering K" first="Kaethi" last="Geering">Kaethi Geering</name>
<name sortKey="Hamilton, Elisha J" sort="Hamilton, Elisha J" uniqKey="Hamilton E" first="Elisha J" last="Hamilton">Elisha J. Hamilton</name>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
<name sortKey="Rasmussen, Helge H" sort="Rasmussen, Helge H" uniqKey="Rasmussen H" first="Helge H" last="Rasmussen">Helge H. Rasmussen</name>
<name sortKey="White, Caroline N" sort="White, Caroline N" uniqKey="White C" first="Caroline N" last="White">Caroline N. White</name>
</noCountry>
<country name="Australie">
<region name="Nouvelle-Galles du Sud">
<name sortKey="Figtree, Gemma A" sort="Figtree, Gemma A" uniqKey="Figtree G" first="Gemma A" last="Figtree">Gemma A. Figtree</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A87 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A87 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19542013
   |texte=   Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19542013" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020